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Note 

umerical Procedure for a Pulsed DF-CO2 Transfer Laser* 

I. INTROD~~T~~I+ 

Recently, a numerical procedure for constant-gam chemical laser caktalatkns 
was presented which accounted for J-shifting of the laser transition [I]. It was 
postulated that, at any particular time during lasing, only a single transition 
(corresponding to a particular rotational quantum number J) between any two 
adjacent vibrational levels is involved in lasing. Other transitions, involving other 
rotational states, correspond to smaller gain coefficients and therefore do not 
satisfy the lasing threshold conditions [2]. This conjecture resulted from thz 
assumption that the rotational populations for a given vibrational level are in a 
Bohzmann distribution at the translational temperature (valid if the ctiaracteristk 
time to achieve the distribution is short compared to the stimulated emission time). 

Tn practice, however, this single, J-shifting transition mode of operation does nod, 
prevail. Spectral measurements on a high-pressure, pulsed DF-CO, transfer laser 
showed that the strongest lines were generally either P(LS) or P(20), with most of 
the laser energy concentrated in two or three P-branch transitions centered on 
these lines [3]. Calculations indicated that the rotational-translational equilibration 
time was much shorter than the stimulated emission time in these experiments. so 
the rotational populations of the lasing vibrational levels should have been in a 
Boltzmann distribution at the translational temperature. Thus, although the 
criterion given for single-line lasing [2] was met in these experiments, lasing was 
observed on several lines with the dominant transitions remaining around P(IE) 
and P(20) for the entire pulse. Furthermore, any tendency for king to shift to the 
rotational transition corresponding to maximum gain could be negated by the 
fact that the laser cavity is tuned with a conventional electric-discharge iascr 
having a dominant transition at P(20). Since the laser cavity is not rctuncd during 
the pulse emission, the shift of maximum gain toward different J-values dilring 
the pulse is not manifested with respect to the spectra of laser outpnt. Thus a 
provision for J-shifting in any computational model is probably not justified. 

In addition to the results of [l] the idea of using a single rotational transition 
in simplified calculations has been explored. For example, approximate dosed-farm 
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expressions for the intensity, energy, and chemical efficiency of an F + H, laser 
oscillator were obtained in [4] by assuming a constant translational-rotational 
temperature, considering only predominant reactions (assumed to be uni- 
directional in their dominant direction) and restricting application to a Doppler- 
broadened gain profile. For the situations where these assumptions are valid, these 
expressions are in good agreement with the results of the more complicated 
numerical procedure in [l]. 

Another recent paper [5] presents simple expressions for the intensity, energy, 
and efficiency of the pulsed DF-CO, chemical transfer laser, but these relations 
were derived with the restriction that the level of initiating radicals was low. 
Generally, this assumption would restrict the applicability of this method to pulses 
of long duration (reduced peak intensity). For the low levels of initiation for which 
this method was valid, it gave excellent agreement with the more comprehensive 
model [I] and experiment. 

The purpose of this communication is to present a procedure, which is inter- 
mediate in simplicity between the more complicated method [l] and the highly 
simplified schemes [4, 51, for calculating the pulse profile and the intracavity 
conditions of a pulsed DF-CO, laser. The primary assumptions of the associated 
theoretical model are: 

(1) The radiation field in the cavity will begin oscillating in a quasisteady-state 
when the gain reaches threshold. Thereafter the gain will remain at threshold until 
the pulse terminates. The neglect of transient oscillation phenomena in the cavity 
radiation field is valid since the important molecular processes occurring in the 
laser medium have characteristic times at least two orders of magnitude longer 
than the mean photon lifetime in the oscillator [6]. 

(2) The correct shape of the laser transition line (Lorentzian with Doppler 
corrections is appropriate for high pressure lasers) is utilized rather than using the 
Doppler-broadened line as an approximation. We are able to avoid this approxi- 
mation since complicating derivatives [l] are unnecessary in the present numerical 
procedure. 

(3) For reasons discussed above, J-shifting is neglected in this model, and the 
P(20) transition is assumed to be dominant for the duration of the pulse. For 
computational purposes, only a single line, corresponding to the dominant 
transition, is used. 

Thus, the present model includes all of the physical features of the earlier complex 
model [l] with the exception that J-shifting is neglected. In addition, for the case 
of high-pressure transfer lasers, a more realistic laser transition line can be utilized 
since a Lorentzian or Voight profile does not lead to mathematical intractability 
in the present procedure. 



PULSED DF-CO, TRANSFER LASER 

In the DF-CO, transfer laser, different energy modes or groups of modes can be 
treated as single reservoirs of energy due to the quasiequilibrium existing among 
the various levels in those modes [33. For the present model the various eaergy 

modes are grouped as follows: 

Group 1 -rotational and translational energy modes; 

Croup 2-symmetric-stretching and bending modes of COe; 

Group 3 -asymmetric-stretching mode of CCL; 

Group 4-vibrational mode of DF. 

The quasi-thermodynamic approach taken by Gordietz [7] is utilized and Maxwek’i- 
Boltzmann distributions (or Treanor distributions when the need arises [8]) are 
assumed for the energy level populations in each group of energy modes. 

With the various energy modes lumped into Groups 1 through 4 and the 
assumption of the quasisteady state for the radiation field, the pulse chemical laser 
can now be represented by 13 + N first order, nonlinear differential equations of 
the type 

In this model QI to Q4 refer to the respective energy densities of Group I ‘io 4, 
and Qf : i > 4, refer to the various chemical species. The symbol Si denotes the 
production rate of the ith energy group or species by chemical, collisional energy- 
exchange, and spontaneous radiative processes. The term E&, where CL and f are 
the gain and radiation intensity, respectively, represents stimulated radiation, 
Thus, Ed = 0, ‘t2 = I+, Ed = -vJv, and, for i > 3, ei = 0, where irv- and .;ZV, 
are the energies for the lower and upper laser levels, respectively, and kv is the 
photon energy of the stimulated radiative process 

The required initial conditions (i.e.l the values of Qi at i = Oj are obtainabie 
from the controllable parameters being studied such as initial pressure, temperature. 
reactant ratios, cavity dimensions, and initial radical concentration (for ignition). 
Because of the quasithermodynamic treatment of energy, initial energy densities 
of Groups 1-4 can be obtained easily from the initial temperature an 
Initial concentrations of reactants can be obtained from initial temperature, 
pressure, and reactant ratios. 

For steady-state oscillations in the laser cavity, the gain coefficient CC can be 
approximated [9] as 
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where Y is the reflectivity of the laser output mirror and L is the cavity length. The 
subscript on Oath denotes it as the “threshold” gain. The gain coefficient is also 
expressible [3] in terms of the variables Q1 , Qe , Q3 , and Q6 , where Q6 is the molar 
concentration of CO,; thus we have the constraint 

Wh =f(Ql , Q, 9 Qs 7 Q,>. (3) 

III. NUMERICAL PROCEDURE 

A numerical integration scheme was formulated to solve the system of equations 
represented by Eqs. (l)-(3). Since the radiation intensity I is an undetermined 
function of time, it was obtained at each time increment of integration by iteration. 
A modification of Hamming’s predictor-corrector method [IO] for nonlinear 
differential equations provided the most direct means for accomplishing this task. 

The iterative procedure used to obtain the radiation intensity function I(t) at each 
increment of integration with respect to t is as follows: (a) The gain expression for 
steady state oscillation, Eq. (2), is used in Eq. (1). (b) Assuming that all desired 
quantities Q<(t) are known at time t, one can march forward to time (t + At) by 
using an estimated value for I(t, t + d t), the average value of I between times t and 
t + d t, in Eq. (1). (c) At the end of the integration step, the computed values of the 
dependent variables Q,(t + At), Q2(t + Lit), and Qs(t + At) can be used to 
calculate the gain coefficient by Eq. (3). (d) If the gain ol(t + At) computed by 
Eq. (3) does not equal the value given by Eq. (2), the “threshold gain,” within a 
tolerance of 0.05 %, the integration step is repeated using a second estimate of 
I(t, t + At). (e) This second estimate is made via a linear type relationship relating 
I(t, t + d t) to ol(t + d t), much in the same manner as the method of false positions. 
If the first guess for I(t, t + At) is Il(t, t + At) and yields a gain coefficient 01~ at 
t -+ At that differs from the threshold gain Oath by an amount greater than the 
tolerance, then a second estimate, Iz(t, t + At), of I(t, t + At) is made according to 

&(t, t + At) = G x Il(t, t + At), (4) 

where G = 1.05 if 01~ > a!th and G = 0.95 if acl < Wh . If the corresponding gain 
coefficient at t + At, 0~~ , does not come within the tolerance of i3lth , then the third 
estimate of I(t, t + At), or 1Jt, t + At) is made according to the linear relation 

The foregoing step is iterated, using Eq. (5) to obtain new estimates of I(t, t + At), 
I, , until an comes within the tolerance of olth . Generally, once the onset of the 
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power pulse (gain-switching) occurred, only one o r two iterations were necessary 
to obtain values of iy within the tolerance of Wh . in fact, the overah computation 
rime for power output of a pulsed laser seldom exceeded that required for the more 
straightforward small-signal-gain calculation by more than 30 percent. 

The iteration procedure was simply placed inside a general Hamming predictor- 
corrector method subroutine (Fortran IV), and served as a control on whether the 
next integration step was performed or not. 

IV. COMPARISON WITH MORE COMPLICATED SW&E 

Pn Fig. Ii a power output profile for the pulsed DF-CO, transfer laser is given as 
computed by the scheme outlined above. Also shown (see circles) is the rest& of a 
calculation 11 1] performed by a more complicated scheme [I 1~ The initial conditions 
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FIG. 1. Power pulse for DF-CO, chemicel transfer laser. 

and rate constants used in the present calculation were the same as those used In 
the more complicated effort [l 11. For convenience, the initial conditions are given 
in the legend of Fig. 1. As indicated, the agreement between the simple iteration 
method and the more complicated method is excellent. Integrated pulse escrgy, 

peak power output, time of peak power output, and pulse duration obtained by the 
simple method were 1.70j/liter, 8.83 kwatt/liter, 150 psec, and 246 psec, respec- 
tively. The corresponding values obtained by the more complicated method were 
1.71 jjiiter, 8.64 kwatt/liter, 145 psec and 255 ,usec, respectively. 

Time required for the computation of a single laser pulse profiie via the simpie 
method presented here was 18 seconds on an IBM 360-31 at the APL computer 
center. 
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